Module: CAF

TD 3. Strong Convergence - Weak Convergence - Weak star Convergence

Exercise 1. Show that, if the dual of a Banach space X is reflexive, then X itself is reflexive.

Exercise 2. Let Y be a closed subspace of a reflexive Banach space X. Show that the quotient space X/Y is reflexive.

Exercise 3. (1) Let X be a reflexive Banach space. Show that, given any $x' \in X'$, there exists $x_0 \in X$ such that $||x_0|| = 1$ and $||x'|| = \sup_{||x||=1} |x'(x)| = x'(x_0)$.

(2) Show that, conversely, if a Banach space X is such that, given any $x' \in X'$, there exists $x_0 \in X$ such that $||x_0|| = 1$ and $||x'|| = \sup_{||x||=1} |x'(x)| = x'(x_0)$, then X is réflexive.

Exercise 4. Let $(X, \|.\|)$ be a reflexive Banach space, and let Z be a nonempty closed convex subset of X.

- 1. Show that, given any element $x \in X$, there exists $y \in Z$ such that $||x Y|| = \inf_{z \in Z} ||x z||$. Hint: Consider an infinizing sequence and use the Banach-Eberlein-Smulian theorem.
- 2. Show that y is unique if $(X, \|.\|)$ is strictly convex.

Exercise 5. Let the subset Z of the space $\mathcal{C}([0,1])$ equipped with the sup norm |||| be defined by

$$Z = \left\{ f \in \mathcal{C}([0,1]); \int_0^{1/2} f(x) dx = 1 + \int_{1/2}^1 f(x) dx \right\}.$$

- 1. Show that Z is a nonempty closed convex subset of C([0,1]).
- 2. Show that $\inf_{f \in \mathbb{Z}} ||f|| = 1$ but that there is no $f \in \mathbb{Z}$ such that ||f|| = 1.
- 3. Conclude that the Banach space $(\mathcal{C}([0,1]), \|.\|)$ is not reflexive.

Exercise 6. Let X be a separable Banach space. Show that any bounded sequence in X' contains a weakly-* convergent subsequence.

Exercise 7. Let Ω be an open subset of \mathbb{R}^n and let $(f_k)_{k\geq 1}$ be a bounded sequence in $L^{\infty}(\Omega)$. Show that there exist a subsequence $(f_{\sigma}(k))_{k\geq 1}$ and a fonction $f \in L^{\infty}(\Omega)$ such that for each $g \in L^1(\Omega)$,

$$\int_{\Omega} f_{\sigma(k)} g dx \to \int_{\Omega} f g dx \text{ as } k \to \infty.$$

Exercise 8. Let X be a normed vector space. Show that the image J(X) of X under the canonical isometry J is closed in X" if and only if X is a Banach space.

Exercise 9. Let Ω be an open subset of \mathbb{R}^n , $1 and let functions <math>f_k \in L^p(\Omega)$, $k \ge 1$ and $f \in L^p(\Omega)$ be such that the sequence $(f_k)_{k\ge 1}$ is bounded in $L^p(\Omega)$ and f_k converges almost everywhere in Ω to f as $k \to \infty$. Show that

$$f_k \rightharpoonup f \text{ as } k \rightarrow \infty.$$