TD 2

Module: CAF Fundamentals Theorems of Functional Analysis

Exercise 1. Given X a real Banach space, Y a proper closed subspace of X, and $x_0 \in X$ with $x_0 \notin Y$. Show that there exists $f \in X'$ such that ||f|| = 1, $f(x_0) = \text{dist}(x_0, Y)$, and $f|_Y = 0$.

Exercise 2. Characterization of Adherent Points to a Subspace Let X be a normed vector space, Y a subspace of X, and $z \in X$. Prove that z is adherent to Y if and only if any continuous linear functional on X that is zero on Y is also zero at z.

Consequences:

- 1. If $x \in X$ such that, for all $f \in X'$, f(x) = 0, then x = 0.
- 2. If every continuous linear functional that is zero on Y is also zero on X, then Y is dense in X.

Exercise 3. Consider the subspace $Y = \{x \in \mathbb{R}^3 : x_3 = 0\}$ of \mathbb{R}^3 and a linear functional $f: Y \to \mathbb{R}$ defined as $f(x) = a \cdot x$, where $a = (a_1, a_2, 0) \in \mathbb{R}^3$. Determine all linear extensions of f to \mathbb{R}^3 .

Exercise 4. Let Y be the subspace of C([0;1]) consisting of constant functions. Provide an example of a linear and bounded functional on Y that has infinitely many linear extensions on C([0;1]) with the same norm as that of f.

Exercise 5. Let f be a bounded linear functional defined on a non-empty subspace $Y \neq \{0\}$ of a Hilbert space H. Show that f has a linear extension \tilde{f} on H such that $||f|| = ||\tilde{f}||$.

Exercise 6. For a given semi-norm ρ on a vector space X, prove that for every $x_0 \in X$, there exists a functional f on X such that $f(x_0) = \rho(x_0)$ and $|f(x)| \leq \rho(x)$ for all $x \in X$.

Exercise 7. Suppose X is a normed vector space. Show that if f(x) = f(y) for all $f \in X'$, then x = y.

Exercise 8. Prove that every subspace of a reflexive Banach space is also reflexive.

Exercise 9. Show that a Banach space is reflexive if and only if its dual is reflexive.

Exercise 10. Let X be a normed vector space, and M a subset of X. Prove that for any $x \in X$, x belongs to the closure of the linear span of M if and only if f(x) = 0 for all $f \in X'$ such that f = 0 on M.

Exercise 11. Assume $x \in \ell^{\infty}$. Show that if the series $\sum_{i=1}^{\infty} x_i y_i$ is convergent for all $y \in \ell^2$, then $x \in \ell^2$.

Exercise 12. Assume $x \in \ell^{\infty}$. Prove that if the series $\sum_{i=1}^{\infty} x_i y_i$ is convergent for all $y \in c_0$, then $x \in \ell^1$.

Exercise 13. Suppose X is a Banach space and $(x_n)_{n\geq 1}$ is a sequence in X such that the sequence $(f(x_n))_{n\geq 1}$ is bounded for all $f \in X'$. Show that the sequence $(x_n)_{n\geq 1}$ is bounded.

Exercise 14. Are the following operators open?

1. $T : \mathbb{R}^2 \to \mathbb{R}$ defined by $Tx = x_1$ for all $x \in \mathbb{R}^2$;

2. $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $Tx = (x_1, 0)$ for all $x \in \mathbb{R}^2$.

Exercise 15. Let X and Y be two Banach spaces, and $T : X \to Y$ a linear, continuous, and injective operator. Consider the operator $T^{-1} : R(T) \to X$. Show that T^{-1} is bounded if and only if R(T) is a closed subspace of Y.

Exercise 16. Given X and Y as two normed vector spaces and $T: X \rightarrow Y$ a closed operator.

- 1. Prove that T(K) is closed in Y for all compact subsets K in X.
- 2. Prove that $T^{-1}(K)$ is closed in X for all compact subsets K in Y.

Exercise 17. Show that if $T : X \to Y$ is a closed operator, where X and Y are normed vector spaces and Y is compact, then T is bounded.

Exercise 18. Let X and Y be two normed spaces, with X being compact. Prove that if $T: X \to Y$ is a closed and onto and one-to one (bijective) operator, then T^{-1} is bounded.

Exercise 19. Prove that if $T : X \to Y$ is a closed operator, where X and Y are normed vector spaces, then the kernel of T(ker(T)) is closed.

Exercise 20. Let X and Y be two normed spaces, and $S : X \to Y$ is a closed operator, and $T : X \to Y$ is a bounded operator. Show that S + T is bounded.

Exercise 21. Show that a normed vector space E that admits a countable basis cannot be complete.

Exercise 22. For a given vector space E, if any norm on E makes it a Banach space, what can be said about E?

Exercise 23. Let $f : \mathbb{R}^+ \to \mathbb{R}$ be a continuous function, and suppose that for every x > 0, the sequence $(f(x_n))_{n \in \mathbb{N}}$ converges to 0. Prove that the limit of f as x approaches $+\infty$ is 0.