Module: CAF TD 2 Fundamentals Theorems of Functional Analysis

Exercise 1. Given *X* a real Banach space, *Y* a proper closed subspace of *X*, and $x_0 \in X$ with $x_0 \notin Y$. Show that there exists $f \in X'$ such that $||f|| = 1$, $f(x_0) = \text{dist}(x_0, Y)$, and $f|_Y = 0$.

Exercise 2. Characterization of Adherent Points to a Subspace Let *X* be a normed vector space, *Y* a subspace of *X*, and $z \in X$. Prove that *z* is adherent to *Y* if and only if any continuous linear functional on *X* that is zero on *Y* is also zero at *z*.

Consequences:

- 1. If $x \in X$ such that, for all $f \in X'$, $f(x) = 0$, then $x = 0$.
- 2. If every continuous linear functional that is zero on *Y* is also zero on *X*, then *Y* is dense in *X*.

Exercise 3. Consider the subspace $Y = \{x \in \mathbb{R}^3 : x_3 = 0\}$ of \mathbb{R}^3 and a linear functional $f: Y \to \mathbb{R}$ defined as $f(x) = a \cdot x$, where $a = (a_1, a_2, 0) \in \mathbb{R}^3$. Determine all linear extensions of f to \mathbb{R}^3 .

Exercise 4. Let *Y* be the subspace of $C([0,1])$ consisting of constant functions. Provide an example of a linear and bounded functional on *Y* that has infinitely many linear extensions on $C([0,1])$ with the same norm as that of f.

Exercise 5. Let f be a bounded linear functional defined on a non-empty subspace $Y \neq \{0\}$ of a Hilbert space *H*. Show that *f* has a linear extension \tilde{f} on *H* such that $||f|| = ||\tilde{f}||$.

Exercise 6. For a given semi-norm ρ on a vector space X, prove that for every $x_0 \in X$, there exists a functional *f* on *X* such that $f(x_0) = \rho(x_0)$ and $|f(x)| \leq \rho(x)$ for all $x \in X$.

Exercise 7. Suppose *X* is a normed vector space. Show that if $f(x) = f(y)$ for all $f \in X'$, then $x = y$.

Exercise 8. Prove that every subspace of a reflexive Banach space is also reflexive.

Exercise 9. Show that a Banach space is reflexive if and only if its dual is reflexive.

Exercise 10. Let *X* be a normed vector space, and *M* a subset of *X*. Prove that for any $x \in X$, *x* belongs to the closure of the linear span of *M* if and only if $f(x) = 0$ for all $f \in X'$ such that $f = 0$ on *M*.

Exercise 11. Assume $x \in \ell^{\infty}$. Show that if the series $\sum_{i=1}^{\infty} x_i y_i$ is convergent for all $y \in \ell^2$, then $x \in \ell^2$.

Exercise 12. Assume $x \in \ell^{\infty}$. Prove that if the series $\sum_{i=1}^{\infty} x_i y_i$ is convergent for all $y \in c_0$, then $x \in \ell^1$.

Exercise 13. Suppose *X* is a Banach space and $(x_n)_{n>1}$ is a sequence in *X* such that the sequence $(f(x_n))_{n\geq 1}$ is bounded for all $f \in X'$. Show that the sequence $(x_n)_{n\geq 1}$ is bounded.

Exercise 14. Are the following operators open?

- 1. $T : \mathbb{R}^2 \to \mathbb{R}$ defined by $Tx = x_1$ for all $x \in \mathbb{R}^2$;
- 2. $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $Tx = (x_1, 0)$ for all $x \in \mathbb{R}^2$.

Exercise 15. Let X and Y be two Banach spaces, and $T: X \rightarrow Y$ a linear, continuous, and injective operator. Consider the operator $T^{-1}: R(T) \to X$. Show that T^{-1} is bounded if and only if *R*(*T*) is a closed subspace of *Y*.

Exercise 16. Given *X* and *Y* as two normed vector spaces and $T : X \rightarrow Y$ a closed operator.

- 1. Prove that *T*(*K*) is closed in *Y* for all compact subsets *K* in *X*.
- 2. Prove that $T^{-1}(K)$ is closed in *X* for all compact subsets *K* in *Y*.

Exercise 17. Show that if $T : X \to Y$ is a closed operator, where X and Y are normed vector spaces and *Y* is compact, then *T* is bounded.

Exercise 18. Let *X* and *Y* be two normed spaces, with *X* being compact. Prove that if $T : X \to Y$ is a closed and onto and one-to one (bijective) operator, then T^{-1} is bounded.

Exercise 19. Prove that if $T : X \to Y$ is a closed operator, where X and Y are normed vector spaces, then the kernel of $T(\ker(T))$ is closed.

Exercise 20. Let *X* and *Y* be two normed spaces, and $S: X \rightarrow Y$ is a closed operator, and $T: X \rightarrow Y$ is a bounded operator. Show that $S + T$ is bounded.

Exercise 21. Show that a normed vector space *E* that admits a countable basis cannot be complete.

Exercise 22. For a given vector space *E*, if any norm on *E* makes it a Banach space, what can be said about *E*?

Exercise 23. Let $f : \mathbb{R}^+ \to \mathbb{R}$ be a continuous function, and suppose that for every $x > 0$, the sequence $(f(x_n))_{n\in\mathbb{N}}$ converges to 0. Prove that the limit of f as *x* approaches $+\infty$ is 0.