TD1

Module: CAF Metric spaces - Normed vector spaces

Exercise 1. Let $\ell^{\infty} = \{x = (\xi_i) \mid i = 1^{\infty}, \xi_i \in \mathbb{R} \text{ s. t. } \sup_i |\xi_i| < \infty\}$. It is recalled that ℓ^{∞} equipped with the norm $\|.\|_{\infty}$ is a Banach space. We consider the following sets:

- c = set of real convergent sequences, (1)
- $c_0 = set of real sequences converging to 0,$ (2)
- $c_{00} = set of real sequences with a finite number of nonzero terms.$ (3)
- 1. Verify that c, c_0 , and c_{00} are vector subspaces of ℓ^{∞} .
- 2. Are the spaces c, c_0 , and c_{00} Banach spaces? Justify.
- 3. Show that c_{00} is dense in c_0 .

Exercise 2. Given a normed vector space $(X, \|\cdot\|)$. The set $e_n, n \ge 1$ is called a **Schauder** basis for X if for every $x \in X$, there exist unique $\alpha_n \in \mathbb{K}$ such that $\|x - \sum_{i=1}^n \alpha_i e_i\| \to 0$ as $n \to +\infty$. The series $\sum_{i=1}^{\infty} \alpha_i e_i$ is called the expansion of x with respect to the basis $e_n, n \ge 1$, and we write $x = \sum_{i=1}^{\infty} \alpha_i e_i$.

- 1. Show that $e_n = (\delta_{in})_{i \ge 1}$, $n \ge 1$ is a Schauder basis in ℓ^p , where $p \ge 1$.
- 2. Show that if X has a Schauder basis, then X is separable.
- *3.* Conclude that ℓ^{∞} does not have a Schauder basis.

Exercise 3. 1. Construct the unit balls in $(\mathbb{R}^2, \|.\|_p)$ corresponding to $p = 1, 2, \infty$.

2. Show that $N(\xi_1, \xi_2) = \sqrt{\xi_1^2 + 2\xi_1\xi_2 + 5\xi_2^2}$, $\xi_1, \xi_2 \in \mathbb{R}$ defines a norm on \mathbb{R}^2 . Construct its unit ball.

Exercise 4. Let X be a vector space, and let $N : X \to \mathbb{R}$ be a function satisfying the following properties for all $x \in X$ and $\alpha \in \mathbb{R}$:

- $N(x) \ge 0$, and N(x) = 0 if and only if x = 0.
- $N(\alpha x) = |\alpha| N(x)$.

Show the equivalence of the following statements:

- 1. N is a norm on X.
- 2. N is convex.
- 3. The set $\{x \in X \mid N(x) \le 1\}$ is convex.

Exercise 5. Let *Y* be a closed subspace of a normed vector space $(X, \|.\|)$.

1. Show that the function $\|.\|_0 : X/Y \to \mathbb{R}$ defined by $\|\hat{x}\|_0 = \inf\{\|x\| \mid x \in \hat{x}\}$ defines a norm on X/Y.

2. Prove that if X is complete, then X/Y is a Banach space.

Exercise 6. Let C be a compact convex set in \mathbb{R}^n , such that 0 belongs to the interior of this compact convex set. The gauge of this convex set (or the Minkowski functional of the convex set) is the function $j : \mathbb{R}^n \to \mathbb{R}_+$ defined as

$$j(x) = \inf\{t > 0 \mid \frac{x}{t} \in C\}.$$
(4)

Show that for all $x, y \in \mathbb{R}^n$ and $\alpha > 0$:

1. j(x) = 0 if and only if x = 0.

2.
$$j(\alpha x) = \alpha j(x)$$
.

- 3. $j(x+y) \le j(x) + j(y)$.
- 4. If C is symmetric with respect to the origin, the gauge j defines a norm on \mathbb{R}^n whose closed unit ball is the compact set C.

Exercise 7. Let X be a normed vector space over \mathbb{R} . X is called **uniformly convex** if for every $\varepsilon > 0$, there exists $\delta(\varepsilon) > 0$ such that

$$|x|| = ||y|| = 1 \text{ and } ||x - y|| \ge \varepsilon \text{ imply } \left\|\frac{x + y}{2}\right\| \le 1 - \delta(\varepsilon).$$
 (5)

- 1. Verify that $(\mathbb{R}^n, \|.\|_p)$, for 1 , are uniformly convex.
- 2. Are the spaces $(\mathbb{R}^n, \|.\|_1)$ and $(\mathbb{R}^n, \|.\|_\infty)$ uniformly convex?

Exercise 8. *Given X as a Banach space and K as a compact subset in X.*

- 1. Show that for every $x \in X$, there exists $y \in K$ such that $||x y|| = \inf_{z \in K} ||x z||$.
- 2. Show that if y is unique, then the map $P_K : X \to K$ defined by $||x P_K x|| = \inf_{z \in K} ||x z||$ is continuous.

Exercise 9. *Let Y be a finite-dimensional subspace of a normed vector space X.*

- 1. Show that for every $x \in X$, there exists $y \in Y$ such that $||x y|| = \inf_{z \in Y} ||x z||$.
- 2. Show that if, in addition, X is uniformly convex, then y is unique.

Exercise 10. Show that the interior of a compact subset in an infinite-dimensional normed vector space *is empty.*

Exercise 11. Let X be a vector space, $p : X \to \mathbb{R}$ be a seminorm, and $Y = \{x \in X \mid p(x) = 0\}$. Consider $X/Y = \{\hat{x} = x + Y \mid x \in X\}$, the associated quotient space (composed of equivalence classes resulting from the equivalence relation $x_1 \sim x_2$ if $x_1 - x_2 \in Y$).

- 1. Verify that Y is a subspace of X.
- 2. Show that p(0) = 0 and $|p(x) p(y)| \le p(x y)$ for all $x, y \in X$.
- 3. Conclude that $\|\hat{x}\|_0 = p(x)$, where $x \in \hat{x}$, is uniquely defined, and $\|.\|_0 : X/Y \to \mathbb{R}$, $\|\hat{x}\|_0 = p(x)$, $x \in \hat{x}$ defines a norm on the quotient space X/Y.

Exercise 12. Consider X, the vector space of C^1 functions on [0, 1] such that f(0) = 0.

- 1. Define, for $f \in X$, $N(f) = ||f||_{\infty} + ||f'||_{\infty}$. Show that N is a norm on X.
- 2. Show that for all $f \in X$ and $x \in [0,1]$, $f(x) = e^{-x} \int_0^x e^t (f(t) + f'(t)) dt$.
- 3. Define, for $f \in X$, $N'(f) = ||f + f'||_{\infty}$. Show that N' is a norm on X and is equivalent to N.

Exercise 13. Let A be the set of continuous functions on [0, 1] such that $f(x) \ge 0$ for all $x \in [0, 1]$.

- 1. Equip C[0,1] with the norm $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$. Show that A is closed and determine its *interior*.
- 2. Equip C[0,1] with the norm $||f||_1 = \int_0^1 |f(x)| dx$. Show that the interior of A is empty and that A is closed.

Exercise 14. *Consider* $X = C^{1}([a, b])$.

- 1. Is X complete when equipped with the uniform norm $\|.\|_{\infty}$?
- 2. Consider the norm $N(f) = \sup_{t \in [a,b]} ||f(t)|| + \sup_{t \in [a,b]} ||f'(t)||$. Is the space (X, N) complete?

Exercise 15. Let $A = \{x_n = (\delta_{in})_{i=1}^{\infty} \mid n = 1, 2, ...\} \subset \ell^{\infty}$.

1. Verify that

$$\|x_n\|_{\infty} = 1, \text{ for all } n \ge 1, \tag{6}$$

$$\|x_n - x_m\|_{\infty} = 1 - \delta_{nm}, \text{ for all } n, m \ge 1.$$
(7)

- 2. Conclude that A is closed and bounded.
- 3. Is A compact? Justify your answer.

Exercise 16. Let X be a uniform convex Banach space, and let K be a non-empty, convex, closed subset in X. Show that for every $x \in X$, there exists a unique $y \in K$ such that $||x - y|| = \inf_{z \in K} ||x - z||$.