Module: CAF TD1 Metric spaces - Normed vector spaces

Exercise 1. Let $\ell^{\infty} = \{x = (\xi_i) \, i = 1^{\infty}, \xi_i \in \mathbb{R} \text{ s. } t$. sup $|\xi_i| < \infty\}$. It is recalled that ℓ^{∞} equipped *i with the norm* ∥.∥[∞] *is a Banach space. We consider the following sets:*

- *c* = *set of real convergent sequences*, (1)
- $c_0 = set$ *of real sequences converging to 0,* (2)
- $c_{00} = set$ of real sequences with a finite number of nonzero terms. (3)
- 1. Verify that c, c_0 , and c_{00} are vector subspaces of ℓ^{∞} .
- *2. Are the spaces c, c*0*, and c*⁰⁰ *Banach spaces? Justify.*
- *3. Show that* c_{00} *is dense in* c_0 *.*

Exercise 2. *Given a normed vector space* $(X, \| \cdot \|)$ *. The set e_n,* $n \geq 1$ *is called a Schauder basis for X if for every* $x \in X$, there exist unique $\alpha_n \in \mathbb{K}$ such that $||x - \sum_{i=1}^n \alpha_i e_i|| \to 0$ as $n \to +\infty$. The series $\sum_{i=1}^{\infty} \alpha_i e_i$ is called the expansion of x with respect to the basis e_n , $n \ge 1$, and we write $x = \sum_{i=1}^{\infty} \alpha_i e_i$.

- *1. Show that* $e_n = (\delta_{in})_{i \geq 1}$, $n \geq 1$ *is a Schauder basis in* ℓ^p , *where* $p \geq 1$ *.*
- *2. Show that if X has a Schauder basis, then X is separable.*
- *3. Conclude that* ℓ [∞] *does not have a Schauder basis.*

Exercise 3. 1. Construct the unit balls in $(\mathbb{R}^2, \|.\|_p)$ corresponding to $p = 1, 2, \infty$ *.*

2. Show that $N(\xi_1, \xi_2) = \sqrt{\xi_1^2 + 2\xi_1 \xi_2 + 5\xi_2^2}$, $\xi_1, \xi_2 \in \mathbb{R}$ defines a norm on \mathbb{R}^2 . Construct its unit *ball.*

Exercise 4. Let X be a vector space, and let $N: X \to \mathbb{R}$ be a function satisfying the following properties *for all* $x \in X$ *and* $\alpha \in \mathbb{R}$ *:*

- $N(x) \geq 0$, and $N(x) = 0$ if and only if $x = 0$.
- $N(\alpha x) = |\alpha|N(x)$.

Show the equivalence of the following statements:

- *1. N is a norm on X.*
- *2. N is convex.*
- *3. The set* $\{x \in X \mid N(x) \leq 1\}$ *is convex.*

Exercise 5. *Let Y be a closed subspace of a normed vector space* (*X*, ∥.∥)*.*

 $1.$ *Show that the function* $\|.\|_0: X/Y \to \mathbb{R}$ *defined by* $\|\hat{x}\|_0 = \inf\{\|x\| \mid x \in \hat{x}\}$ *defines a norm on X*/*Y.*

2. Prove that if X is complete, then X/*Y is a Banach space.*

Exercise 6. *Let C be a compact convex set in* **R***ⁿ , such that* 0 *belongs to the interior of this compact convex set. The gauge of this convex set (or the Minkowski functional of the convex set) is the function* $j: \mathbb{R}^n \to \mathbb{R}_+$ *defined as*

$$
j(x) = \inf\{t > 0 \mid \frac{x}{t} \in C\}.
$$
 (4)

Show that for all $x, y \in \mathbb{R}^n$ *and* $\alpha > 0$ *:*

1. $i(x) = 0$ *if and only if* $x = 0$ *.*

$$
2. \, j(\alpha x) = \alpha j(x).
$$

- *3.* $j(x + y) \leq j(x) + j(y)$.
- *4. If C is symmetric with respect to the origin, the gauge j defines a norm on* **R***ⁿ whose closed unit ball is the compact set C.*

Exercise 7. Let X be a normed vector space over **R**. X is called *uniformly convex if for every* $\varepsilon > 0$, *there exists* $\delta(\varepsilon) > 0$ *such that*

$$
||x|| = ||y|| = 1
$$
 and $||x - y|| \ge \varepsilon$ imply $\left|\frac{x + y}{2}\right| \le 1 - \delta(\varepsilon).$ (5)

- 1. *Verify that* $(\mathbb{R}^n, \|\. \|_p)$, for $1 < p < \infty$, are uniformly convex.
- 2. *Are the spaces* $(\mathbb{R}^n, \|\. \|_1)$ *and* $(\mathbb{R}^n, \|\. \|_\infty)$ *uniformly convex?*

Exercise 8. *Given X as a Banach space and K as a compact subset in X.*

- *1. Show that for every* $x \in X$ *, there exists* $y \in K$ *such that* $||x y|| = \inf_{z \in K} ||x z||$ *.*
- *2. Show that if y is unique, then the map* $P_K : X \to K$ *defined by* $||x P_Kx|| = \inf_{z \in K} ||x z||$ *is continuous.*

Exercise 9. *Let Y be a finite-dimensional subspace of a normed vector space X.*

- *1. Show that for every* $x \in X$ *, there exists* $y \in Y$ *such that* $||x y|| = \inf_{z \in Y} ||x z||$ *.*
- *2. Show that if, in addition, X is uniformly convex, then y is unique.*

Exercise 10. *Show that the interior of a compact subset in an infinite-dimensional normed vector space is empty.*

Exercise 11. Let X be a vector space, $p : X \to \mathbb{R}$ be a seminorm, and $Y = \{x \in X \mid p(x) = 0\}.$ *Consider X/Y* = { \hat{x} = x + *Y* | $x \in X$ }, the associated quotient space (composed of equivalence classes *resulting from the equivalence relation* $x_1 \sim x_2$ *if* $x_1 - x_2 \in Y$ *).*

- *1. Verify that Y is a subspace of X.*
- *2. Show that* $p(0) = 0$ *and* $|p(x) p(y)| \leq p(x y)$ *for all x, y* \in *X.*
- *3. Conclude that* $\|\hat{x}\|_0 = p(x)$, where $x \in \hat{x}$, is uniquely defined, and $\|.\|_0 : X/Y \to \mathbb{R}$, $\|\hat{x}\|_0 =$ $p(x)$, $x \in \hat{x}$ defines a norm on the quotient space X/Y .

Exercise 12. *Consider X, the vector space of* C^1 *functions on* [0, 1] *such that* $f(0) = 0$ *.*

- *1. Define, for* $f \in X$, $N(f) = ||f||_{\infty} + ||f'||_{\infty}$. *Show that* N is a norm on X.
- *2. Show that for all* $f \in X$ *and* $x \in [0, 1]$ *,* $f(x) = e^{-x} \int_0^x e^t (f(t) + f'(t)) dt$.
- *3. Define, for* $f \in X$, $N'(f) = ||f + f'||_{\infty}$. *Show that* N' *is a norm on* X *and is equivalent to* N *.*

Exercise 13. Let A be the set of continuous functions on [0, 1] such that $f(x) \ge 0$ for all $x \in [0, 1]$.

- 1. *Equip* C[0,1] *with the norm* $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$. Show that A is closed and determine its *interior.*
- 2. Equip C[0, 1] *with the norm* $||f||_1 = \int_0^1 |f(x)| dx$. Show that the interior of A is empty and that *A is closed.*

Exercise 14. *Consider* $X = C^1([a, b]).$

- *1. Is X complete when equipped with the uniform norm* ∥.∥∞*?*
- 2. *Consider the norm* $N(f) = \sup_{t \in [a,b]} ||f(t)|| + \sup_{t \in [a,b]} ||f'(t)||$. *Is the space* (X, N) *complete?*

Exercise 15. *Let* $A = \{x_n = (\delta_{in})_{i=1}^{\infty} | n = 1, 2, ...\} \subset \ell^{\infty}$ *.*

1. Verify that

$$
||x_n||_{\infty} = 1, \text{ for all } n \ge 1,
$$
 (6)

$$
||x_n - x_m||_{\infty} = 1 - \delta_{nm}, \text{ for all } n, m \ge 1. \tag{7}
$$

- *2. Conclude that A is closed and bounded.*
- *3. Is A compact? Justify your answer.*

Exercise 16. *Let X be a uniform convex Banach space, and let K be a non-empty, convex, closed subset in X. Show that for every* $x \in X$ *, there exists a unique* $y \in K$ *such that* $||x - y|| = \inf_{z \in K} ||x - z||$ *.*