Exercise 1: Are the following functions metrics on E ?

1) $d(x, y) = |x^2 - y^2|$, $E = \mathbb{R}$. 2) $d(x, y) = |x^3 - y^3|$, $E = \mathbb{R}$. 3) $d(x, y) = e^{x-y}, E = \mathbb{R}.$ 4) $d(x, y) =$ 1 $\frac{1}{x}$ – 1 \overline{y} $, E = \mathbb{R}^*$. 5) $d(x, y) = |x - 3y|, E = \mathbb{R}.$

Exercise 2: Let $E = \{x, y, z\}$, and $d : E \times E \longrightarrow \mathbb{R}$ a map defined by

$$
\begin{cases}\n d(x, x) = d(y, y) = d(z, z) = 0, \\
d(x, y) = d(y, x) = 1, \\
d(y, z) = d(z, y) = 2, \\
d(x, z) = d(z, x) = 4.\n\end{cases}
$$

Is d a metric on E ?

Exercise 3: Let d be a metric on E .

1- Prove that the following functions are also metrics on E :

(a)
$$
d_1(x, y) = \min \{d(x, y), 1\},
$$

\n(b) $d_2(x, y) = \frac{d(x, y)}{1 + d(x, y)}.$

2- Show that a set $O \subset E$ is open with repect to d if and only if it is open with respect to d_1 if and only if it is open with respect to d_2 .

3- If (E, d) is complete, show that (E, d_2) is complete.

Exercise 4: Let E be a non-empty set. Define on $E \times E$ the map

$$
d(x,y) = \begin{cases} 0, & \text{si } x = y \\ 1, & \text{si } x \neq y \end{cases}
$$

:

1- Show that d is a metric (discrete metric) on E .

2- Let $a \in E$ and $r \in \mathbb{R}_+^*$. Determine the open ball $B_d(a, r)$, the closed ball $B_d(a, r)$ and the sphere $S_d(a, r)$.

Exercise 5: Let (E, d) be a metric space, a point of E and A a non-empty set of E. Show that:

$$
a \in \overline{A} \iff d(a, A) = 0.
$$

Exercise 6: Let (E_1, d_1) and (E_2, d_2) be two metric spaces, and f a map from E_1 to E_2 . 1- Show that:

f uniformly continuous \iff $\forall (x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \text{ sequences of } E_1 : \lim_{n \to +\infty} d_1(x_n, y_n) = 0 \implies \lim_{n \to +\infty} d_2(f(x_n), f(y_n)) = 0.$

2- Deduce that the function $f(x) = \sin \frac{1}{x}$ $\frac{1}{x}$ is not uniformly continuous on $]0, +\infty]$. (Take: $x_n =$ 1 $\frac{1}{2n\pi}$, $y_n =$ 1 $2n\pi + \frac{\pi}{2}$ $\frac{\overline{\pi}}{2}, n \in \mathbb{N}^*$).

Exercise 7: Let (E_1, d_1) and (E_2, d_2) be two metric spaces, and let f be a uniformly continuous mapping from E_1 to E_2 .

Show that the image of any Cauchy sequence in E_1 under f is a Cauchy sequence in E_2 .

Exercise 8 : Let (E, d) be a metric space, A and B two non-empty disjoint closed sets of E. Show that there exists $f : E \longrightarrow \mathbb{R}$ continuous such that:

$$
f|_A = 0;
$$
 $f|_B = 1;$ $0 \le f \le 1.$