Kasdi Merbah Ouargla University Mathematics Department

Exercise set 2 - Topology

Exercise 1: Let (E,T) be a topological space and let $A \subset E$. Show that

 $\overline{A^c} = (int(A))^c$ and $(\overline{A})^c = int(A^c)$.

Exercise 2: Let \mathbb{R} be endowed with its standard topology. Let A be a topological subspace of \mathbb{R} . (a) Is $\{3\}$ open in $A = [0, 1] \cup \{3\}$?

(a) Is $\{3\}$ open III $A = [0, 1] \cup \{3\}$.

(b) Are [0,1) and (0,1) open in A = [0,1]?

(c) Let $n \in \mathbb{N}$. Is $\{n\}$ open in $A = \mathbb{N}$?

(d) Show that [0,1] and (2,3) are both open in $A = [0,1] \cup (2,3)$. What can you deduce from that?

(e) What is the closure of $(0, \frac{1}{2})$ in A = (0, 1]?

Exercise 3: Consider the topological space (E, T) defined by

$$E = \{a, b, c, d\}$$
 and $T = \{\emptyset, E, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$

Let $f: E \longrightarrow E$ be a mapping defined by

$$f(a) = b, f(b) = d, f(c) = b, f(d) = c.$$

Is f continuous at a? at b? at c? at d?

Exercise 4: Let (E_1, T_1) be a topological space and $A \subset E_1$. Let $E_2 = \{0, 1\}$ be equipped with the topology $T_2 = \{\emptyset, \{1\}, E_2\}$. Define a function $f : E_1 \longrightarrow E_2$ by

$$f(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

Show that f is continuous on E_1 if and only if A is open in E_1 .

Exercise 5: Let (E_1, T_1) and (E_2, T_2) be two topological spaces. Let $f : E_1 \longrightarrow E_2$ be a mapping. Show the following:

(a) f is continuous if and only if $f^{-1}(A^o) \subset [f^{-1}(A)]^o$ for all $A \subset E_2$.

(b) f is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for all $A \subset E_1$.

- (c) f is closed if and only if $f(A) \subset f(\overline{A})$ for all $A \subset E_1$.
- (d) f is open if and only if $f(A^o) \subset [f(A)]^o$ for all $A \subset E_1$.

Exercise 6: Let (E_1, T_1) and (E_2, T_2) be two topological spaces. Let $f : E_1 \longrightarrow E_2$ be a continuous and one-to-one mapping.

(a) Show that if E_2 is **Hausdorff**, then so is E_1 .

(b) Give a counterexample showing that the hypothesis of the continuity cannot merely be dropped.

(c) Give a counterexample showing that the hypothesis of the injectivity cannot be completely eliminated.

Exercise 7: Let E be a Hausdorff topological space.

(a) Show that every finite subset is closed.

(b) Show that every topological subspace of E is Hausdorff.

(c) Show that every topological space homeomorphic to E is Hausdorff.

(d) Let F be a topological space. Show that if there exists a continuous injective map from F to E, then F is Hausdorff.

Exercise 8: Let (E,T) be a topological space. The **diagonal** of E is defined to be the set

$$\Delta = \{ (x, x) : x \in E \}.$$

Show that E is **Hausdorff** if and only if its diagonal is closed.