Kasdi Merbah Ouargla University Mathematics Department

Exercise set 1 - Topology

Exercise 1: Let
$$E = \{a, b, c, d\}$$
 a set with four points. Which of the following ones are topologies for E ?
(a) $\{\emptyset, E, \{a\}, \{b\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$

(a)
$$\{\emptyset, E, \{u\}, \{b\}, \{u, c\}, \{u, b\}, \{u, b\},$$

(b) $\{\emptyset, E, \{a\}, \{b\}, \{a, b\}, \{b, d\}\}$

 $\{\emptyset, E, \{a, c, d\}, \{b, c, d\}\}$ (c)

Exercise 2: For each $x \in \mathbb{R}$, let $I_x = (x, \infty)$, and let $I_\infty = \emptyset$ and $I_{-\infty} = \mathbb{R}$. Check that

$$T = \{I_x : x \in \mathbb{R} \cup \{-\infty, \infty\}\}$$

defines a topology on \mathbb{R} .

Exercise 3: Let E be a set and let p be an element of E. Check that

$$T = \{A \subseteq E : p \notin A \text{ or } E \setminus A \text{ is finite}\}$$

defines a topology on E.

Exercise 4: Let T be a topology on the set $E = \{a, b, c\}$. Show that if the singletons $\{a\}, \{b\}$ and $\{c\}$ are open in T, then T is the discrete topology.

Exercise 5: Prove that any intersection $\cap T_i$ of topologies T_i on the same set E is a topology. Show that it is not true, in general, for unions.

Exercise 6: The goal of this exercise is to give some equivalent characterizations for the interior of a set. Let E be a topological space and let F be a subset of E. Moreover, let:

(i) $int(F) = \{x \in E \text{ there exists } O \text{ open such that } x \in O \subseteq F \};$

(ii) F_1 be the maximal open set that is contained in F (if it exists);

(iii) F_2 be the union of all the open sets that are contained in F.

Show that F_1 exists and $int(F) = F_1 = F_2$.

Exercise 7: The goal of this exercise is to give some equivalent characterizations for the **closure** of a set. Let E be a topological space and let F be a subset of E. Let:

(i) $\overline{F} = int(F) \cup \{x \in E | \text{ for each open } O \text{ such that } x \in O, O \cap F \neq \emptyset \neq O \cap (E \setminus F)\};$

- (ii) F_1 be the minimal closed set that contains F (if it exists);
- (iii) F_2 be the intersection of all the closed sets that contain F;

(iv) $F_3 = E \setminus int(E \setminus F)$.

Show that F_1 exists and $\overline{F} = F_1 = F_2 = F_3$.

Exercise 8: Give an example of two subsets A and B of \mathbb{R} such that

$$A \cap B = \emptyset, \qquad \overline{A} \cap B \neq \emptyset, \qquad A \cap \overline{B} \neq \emptyset.$$

Exercise 9: Let A and B be subsets of a topological space E. Show that:

- (i) $int(A) \cap int(B) = int(A \cap B);$
- (ii) $int(A) \cup int(B) \subseteq int(A \cup B);$

(iii) $\overline{A} \cup \overline{B} = \overline{A \cup B};$

(iv) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$;

(v) Give one example where the equality in part (ii) is satisfied, one where it fails, one where the equality in part (iv) is satisfied and one where it fails.