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Problems set Variational Inequalities

Exercise 1. Projection Theorem.
Let K be a non-empty closed convex set in a Hilbert space V. We say that y is the projection of
x on K if

‖x− y‖ = inf
z∈K
‖x− z‖

We denote y = PKx.

1. Show that if K is a closed convex set in V, then for all x ∈ V, there exists a unique
projection y ∈ K.

2. Show that
y = PKx ⇔ (PKx− x, PKx− z) ≤ 0, ∀z ∈ K.

3. Show that the mapping PK is a contraction, i.e.,

‖PKx1 − PKx2‖ ≤ C‖x1 − x2‖, ∀x1, x2 ∈ V, 0 ≤ C ≤ 1.

4. Show that the mapping PK is monotone, i.e.,

(PKx1 − PKx2, x1 − x2) ≥ 0, ∀x1, x2 ∈ V.

5. If K is a closed subspace of V, then PK is linear and V = K⊕ K⊥.

Exercise 2. Stampacchia’s Theorem.
Let a(., .) be a continuous bilinear form and coercive on a Hilbert space V. Let K be a nonempty
closed convex set in V, and let f ∈ V ′. Consider the following problem:

(P)
{

Find u ∈ K such that
a(u, v− u) ≥ ( f , v− u), ∀v ∈ K.

1. Show that problem P has a unique solution.

2. Show that the mapping: f 7→ u is Lipschitz and satisfies

‖u1 − u2‖ ≤
1
α
‖ f1 − f2‖,

where f1 7→ u1, f2 7→ u2, and α is the coercivity constant.

Exercise 3. Application of Stampacchia’s Theorem.

Let Ω be a bounded open set in RN with boundary Γ, f ∈ L2(Ω), n the exterior normal on
Γ. Consider the following problem for u:

(PC)
{
−∆u + u = f in Ω,
u ≥ 0, ∂u

∂n ≥ 0, u ∂u
∂n = 0 on Γ
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1. Show that if u is a solution of problem (PC), then it satisfies the following variational
inequality (PV):

a(u, v− u) ≥ L(v− u), ∀v ∈ K,

where

a(u, v) =
∫

Ω
∇u∇v + uvdx, L(v) =

∫
Ω

f vdx, K = {v ∈ H1(Ω), v ≥ 0 on Γ}.

2. Suppose that if u is a solution of (PV) and is regular enough, then u satisfies problem
(PC).

3. Show that problem (PC) has a unique weak solution (in the sense of problem (PV)).

Exercise 4. Penalization Method.
Let a(., .) be a continuous bilinear form and coercive on a Hilbert space V. Let K be a nonempty
closed convex set in V, 0 ∈ K, f ∈ V ′. Consider the following variational inequality:

a(u, v− u) ≥ L(v− u), ∀v ∈ K. (1)

Let B = I − PK, where PK is the projection in V onto K.

1. Verify that:

• (Bv, v) ≥ 0, ∀v ∈ V.

• B = 0 on K.

• (Bu− Bv, u− v) ≥ 0 (monotonicity).

• (Bv, v) = 0⇔ v ∈ K.

2. Show the existence and uniqueness of uε ∈ V as a solution to the equation

a(uε, v) +
1
ε
(Buε, v) = L(v), ∀v ∈ V.

3. Show that:

• ‖uε‖ ≤ C, where C is independent of ε.

• (Buε, uε) ≤ εC

• (Buε, v) ≤ εC ‖v‖, ∀v ∈ V.

4. Show that the weak limit of the sequence uε is a solution of the variational inequality (2).

Exercise 5. Approximation interne
Let a(., .) be a continuous bilinear form and coercive on a Hilbert space V. Let K be a nonempty
closed convex set in V, and f ∈ V ′. Consider the following variational inequality (P):

(P)

{
u ∈ K
a(u, v− u) ≥ ( f , v− u), ∀v ∈ K.

(2)

Suppose that there exists a sequence of finite-dimensional spaces Vh ⊂ V, such that dim Vh <
∞, and ∀v ∈ U, there exists (vh) ⊂ Vh such that vh → v in V as h→ 0.

Suppose also that there exists a sequence of convex closed sets Kh in Vh, such that{
For all v ∈ K, there exists (vh) ⊂ Kh such that vh → v in V,
If uh ∈ Kh and uh ⇀ u in V as h→ 0, then u ∈ K.

(3)
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Define the following problem:

(Ph)

{
uh ∈ Kh

a(uh, vh − uh) ≥ ( f , vh − uh), ∀vh ∈ Kh.
(4)

Show that
lim
h→0
‖uh − u‖V = 0,

where uh is the solution to (Ph) and u is the solution to (P).

Exercise 6. (Proximity Operator) Let V be a Hilbert space, ϕ : V → R̄ be a proper, convex,
and lower semi-continuous function. The proximity operator associated with the function ϕ is
denoted by Proxϕ and satisfies

Proxϕ : V → V
w 7→ u = Proxϕ(w)

where u is the unique minimizer of the function

Φw(v) =
1
2
‖v‖2 + ϕ(v)− (w, v), ∀v ∈ V (5)

1. Show that:

u = Proxϕ(w)⇔ (u, v− u) + ϕ(v)− ϕ(u) ≥ (w, v− u), ∀v ∈ V. (6)

2. Show that the function Proxϕ is monotone, i.e.,

(Proxϕ(w1)− Proxϕ(w2), w1 − w2) ≥ 0, ∀w1, w2 ∈ V. (7)

3. Show that the function Proxϕ is contractive, i.e.,

‖Proxϕ(w1)− Proxϕ(w2)‖ ≥ ‖w1 − w2‖, ∀w1, w2 ∈ V. (8)

4. Conclude that
u = Proxϕ(u)⇔ ϕ(u) ≤ ϕ(v), ∀v ∈ V. (9)

Exercise 7. Let V and ϕ be defined as in Exercise 1. Let K be a non-empty closed convex subset of V,
a(., .) : V ×V → R be a continuous bilinear form, and f ∈ V. We consider the problem:

(P)
{

Find u∈ K such that (10)
a(u, v− u) + ϕ(v)− ϕ(u) ≥ ( f , v− u), ∀v ∈ K. (11)

1. Suppose that a is positive, i.e., a(v, v) ≥ 0, ∀v ∈ V. Show that problem (P) is equivalent to the
problem:

(Q)

{
Find u∈ K such that (12)
a(v, v− u) + ϕ(v)− ϕ(u) ≥ ( f , v− u), ∀v ∈ K. (13)

2. Show that the set of solutions of (P) is a closed convex subset of K.

3. Suppose further that the form a is symmetric. Show that (P) is equivalent to the following mini-
mization problem:

(M)

{
Find u∈ K such that (14)
J(u) ≤ J(v), ∀v ∈ K. (15)

where the function J : V → R is defined as:

J(v) =
1
2

a(v, v) + j(v)− ( f , v), ∀v ∈ V. (16)
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Exercise 8. Consider a continuous and positive bilinear form a(., .) on a Hilbert space V ×V. Let K be
a non-empty closed convex subset of V, and f ∈ V ′. We introduce the following problem:

(P)
{

Find u ∈ K, such that
a(u, v− u) ≥ ( f , v− u), for all v ∈ K.

1. Show that problem (P) is equivalent to the problem

(Q)

{
Find u ∈ K, such that (17)
a(v, v− u) ≥ ( f , v− u), for all v ∈ K. (18)

2. Prove that the set of solutions S = {u ∈ K/a(u, v− u) ≥ ( f , v− u), for all v ∈ K} of problem
(P) is a closed convex set.

3. Let β(., .) be a continuous and coercive bilinear form on V ×V, and g ∈ V ′. For ε > 0, we define
the problem

(P)
{

Find uε ∈ K, such that
a(uε, v− uε) + εβ(uε, v− uε) ≥ ( f + εg, v− uε), for all v ∈ K.

Show that problem (P ε) has a unique solution uε.

4. Prove that
S 6= ∅ ⇐⇒ ∃C > 0, ‖uε‖ ≤ C, (19)

C is independent of ε.

5. Assuming that ‖uε‖ ≤ C, demonstrate that uε → u0 as ε → 0, where u0 is the unique solution
of the problem

(P)
{

Find u0 ∈ S , such that
β(u0, v− u0) ≥ (g, v− u0), for all v ∈ S .

Exercise 9. Let V be a Hilbert space, and ϕ(., .) : V ×V → R̄ be a convex function that is lower semi-
continuous with respect to the first component, i.e., if vn → v, then lim infn≥1 ϕ(vn, w) ≥ ϕ(v, w)
for all w ∈ V. Additionally, ϕ(tu + (1− t)v, w) ≤ tϕ(u, w) + (1− t)ϕ(v, w) for all u, v, w ∈, and
t ∈ [0, 1]. Let K be a non-empty closed convex subset of V, a(., .) : V×V → R be a continuous bilinear
form, and f ∈ V.

We consider the problem:

(P)
{

Find u ∈ K, such that (20)
a(u, v− u) + ϕ(v, u)− ϕ(u, u) ≥ ( f , v− u), for all v ∈ K. (21)

1. Suppose that a is positive, i.e., a(v, v) ≥ 0, for all v ∈ V. Show that problem (P) is equivalent to
the problem

(Q)

{
Find u ∈ K, such that (22)
a(v, v− u) + ϕ(v, u)− ϕ(u, u) ≥ ( f , v− u), for all v ∈ K. (23)

2. Prove that the set of solutions of (P) is a closed convex subset of K.

3. If a is also symmetric, show that (P) is equivalent to the following minimization problem:

(M)

{
Find u ∈ K, such that (24)
J(u) ≤ J(v), for all v ∈ K. (25)

where the function J : V → R is defined as:

J(v) =
1
2

a(v, v) + ϕ(v, v)− ( f , v), for all v ∈ V. (26)

Good luck!
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