University of Ouargla 3'd semester
Department of Mathematics 2"d master Modeling and Analysis

Problems set Variational Inequalities

Exercise 1. Projection Theorem.
Let K be a non-empty closed convex set in a Hilbert space V. We say that y is the projection of
x on K if
—yll = inf ||x —
I =yl = inf Jlx — 2]

We denote y = Pxx.

1. Show that if K is a closed convex set in V, then for all x € V, there exists a unique
projection y € K.

2. Show that
y = Pgx < (Pxkx —x,Pgx —z) <0,Vz € K.

3. Show that the mapping Px is a contraction, i.e.,

||PKX1 — PKJCzH < CHxl — x2||,Vx1,x2 eV,0<C<1.

4. Show that the mapping Pk is monotone, i.e.,

(Ple — Pxxp,x1 — XZ) >0,Vx1,x, € V.

5. If K is a closed subspace of V, then Pk is linear and V = K& K+.

Exercise 2. Stampacchia’s Theorem.
Leta(.,.) be a continuous bilinear form and coercive on a Hilbert space V. Let K be a nonempty
closed convex setin V, and let f € V'. Consider the following problem:

(P) Find u € K such that
a(u,v—u) > (f,v—u),Vo € K.

1. Show that problem P has a unique solution.

2. Show that the mapping: f +— u is Lipschitz and satisfies

1
i~ wal) < 2 1fi — Fall,
where f1 — uy, fo — up, and « is the coercivity constant.

Exercise 3. Application of Stampacchia’s Theorem.

Let Q be a bounded open set in RN with boundary T, f € L?(Q), n the exterior normal on
I'. Consider the following problem for u:

—Au+u=finQ),
(PC){ uZO,%ZO,ug—Z:OonF
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1. Show that if u is a solution of problem (PC), then it satisfies the following variational
inequality (PV):
a(u,v—u) > L(v—u),Vo €K,

where
a(u,v) = / VuVov+ uvdx, L(v) = / fodx, K= {v € H(Q),v > 0onT}.
Q Q
2. Suppose that if u is a solution of (PV) and is regular enough, then u satisfies problem
(PC).
3. Show that problem (PC) has a unique weak solution (in the sense of problem (PV)).

Exercise 4. Penalization Method.
Leta(.,.) be a continuous bilinear form and coercive on a Hilbert space V. Let K be a nonempty
closed convex setin V, 0 € K, f € V'. Consider the following variational inequality:

a(u,v—u) > L(v—u),Vov € K. (1)
Let B = I — Pk, where Px is the projection in V onto K.
1. Verify that:

e (Bv,v) >0,Vve V.

e B=0onKk.

* (Bu — Bv,u —v) > 0 (monotonicity).
e (Bv,v) =0« veK

2. Show the existence and uniqueness of u. € V as a solution to the equation
1
a(ue,v) + E(Bug,v) =L(v),VoeV.

3. Show that:

e ||lug|| < C, where C is independent of «.
* (Bug,u,) <eC
® (Bug,v) <eClv||, Yo e V.

4. Show that the weak limit of the sequence u; is a solution of the variational inequality (2).

Exercise 5. Approximation interne
Leta(.,.) be a continuous bilinear form and coercive on a Hilbert space V. Let K be a nonempty
closed convex setin V, and f € V'. Consider the following variational inequality (P):

u e K
(P) { a(u,v—u) > (f,v—u), Vo € K. @

Suppose that there exists a sequence of finite-dimensional spaces V}, C V, such that dim V}, <
o0, and Vv € U, there exists (vj,) C V}, such thatv, — vin Vash — 0.
Suppose also that there exists a sequence of convex closed sets K, in V},, such that

{ For all v € K, there exists (v,) C K}, such thatv, — vin 'V, 3)

Ifu,e Kyandu, ~uinVash — 0, thenu € K.



Define the following problem:
uy, € K
(Py)q =70 @)
aup, op — up) > (f, o0 — up), Yoy € Ky

Show that
li —ully =0,
lim {fuy, —u]y

where uy, is the solution to (P;) and u is the solution to (P).

Exercise 6. (Proximity Operator) Let V be a Hilbert space, ¢ : V — R be a proper, convex,
and lower semi-continuous function. The proximity operator associated with the function ¢ is
denoted by Prox, and satisfies

Prox, : 'V — v
w +— U= Proxy(w)

where u is the unique minimizer of the function
®y(v) = %HUHZ +¢(v) — (w,v),VoeV (5)
1. Show that:

u = Proxy(w) < (u,v —u)+ @(v) — ¢(u) > (w,v —u),Yo € V. (6)

2. Show that the function Prox, is monotone, i.e.,
(Proxy(w1) — Proxy(ws), wy — wp) > 0,Ywy, wp € V. (7)

3. Show that the function Prox, is contractive, i.e.,
| Proxy(w1) — Proxg(w2)|| > [|w1 — wa||, Vwy, wo € V. 8)

4. Conclude that
u = Proxy(u) & ¢(u) < ¢(v), Vo e V. )

Exercise 7. Let V and ¢ be defined as in Exercise 1. Let K be a non-empty closed convex subset of V,
a(.,.) : V. x V — R be a continuous bilinear form, and f € V. We consider the problem:

(P){ Find ue K such that (10)

a(u,v—u)+ @) —¢(u) > (f,v—u),Vo € K. (11)

1. Suppose that a is positive, i.e., a(v,v) > 0,Vv € V. Show that problem (P) is equivalent to the
problem:

Find ue K such that (12)

( {a(v,v—u)+¢(v)—qo(u) > (f,v—u),Vov € K. (13)

2. Show that the set of solutions of (P) is a closed convex subset of K.

3. Suppose further that the form a is symmetric. Show that (P) is equivalent to the following mini-
mization problem:

( { Find ue K such that (14)
J(u) < J(v),¥v € K. (15)
where the function | : V. — R is defined as:

I(o) = %a(v,v) +i(0) = (f,0), Vo € V. (16)
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Exercise 8. Consider a continuous and positive bilinear form a(.,.) on a Hilbert space V x V. Let K be
a non-empty closed convex subset of V, and f € V'. We introduce the following problem:

(P) Find u € K, such that
a(u,v—u) > (f,v—u), forallv € K.

1. Show that problem (P) is equivalent to the problem

( {Find u € K, such that 17)
a(v,o—u) > (f,v—u), forallv € K. (18)

2. Prove that the set of solutions S = {u € K/a(u,0 —u) > (f,v —u), forallv € K} of problem
(‘P) is a closed convex set.

3. Let B(.,.) be a continuous and coercive bilinear form on V- x V,and g € V'. For ¢ > 0, we define
the problem

(P) Find u* € K, such that
a(ut,v—u°) +ep(u,v—ut) > (f +eg,v—ut), forallv € K.

Show that problem (P®) has a unique solution u*.

4. Prove that
S#Q < IC>0,|uf| <C, (19)

C is independent of e.

5. Assuming that ||u¢|| < C, demonstrate that u¢ — u° as e — 0, where u® is the unique solution
of the problem
Find u® € S, such that
(P) { B(ul, 0 —u®) > (g,0—u), forallv € S.

Exercise 9. Let V be a Hilbert space, and ¢(.,.) : V. x V. — R be a convex function that is lower semi-
continuous with respect to the first component, i.e., if v, — v, then liminf,>1 ¢(v,, w) > @(v, w)
forallw € V. Additionally, ¢(tu + (1 — t)v,w) < te(u,w) + (1 —t)¢(v,w) forall u,v,w €, and
t € [0,1]. Let K be a non-empty closed convex subset of V, a(.,.) : V. x V. — R be a continuous bilinear
form,and f € V.

We consider the problem:

(P){Find u € K, such that (20)

a(u,v—u)+¢(v,u) —@(u,u) > (f,v—u), forallv € K. (21)

1. Suppose that a is positive, i.e., a(v,v) > 0, forall v € V. Show that problem (P) is equivalent to
the problem

Find u € K, such that (22)

( ){ a(v,v—u)+ @(v,u) —e(u,u) > (f,v—u), forallv € K. (23)

2. Prove that the set of solutions of (P) is a closed convex subset of K.

3. If ais also symmetric, show that (P) is equivalent to the following minimization problem:

(M) Find u € K, such that (24)

{](u) < J(v), forallv € K. (25)
where the function | : V — R is defined as:

J(v) = %a(v,v) +¢(v,0) — (f,v), forallv € V. (26)

Good luck!



