Problems set Variational Inequalities

Exercise 1. Projection Theorem.

Let *K* be a non-empty closed convex set in a Hilbert space *V*. We say that *y* is the projection of *x* on *K* if

$$
||x - y|| = \inf_{z \in K} ||x - z||
$$

We denote $y = P_K x$.

- 1. Show that if *K* is a closed convex set in *V*, then for all $x \in V$, there exists a unique projection $y \in K$.
- 2. Show that

$$
y = P_K x \Leftrightarrow (P_K x - x, P_K x - z) \le 0, \forall z \in K.
$$

3. Show that the mapping P_K is a contraction, i.e.,

$$
||P_Kx_1 - P_Kx_2|| \leq C||x_1 - x_2||, \forall x_1, x_2 \in V, 0 \leq C \leq 1.
$$

4. Show that the mapping P_K is monotone, i.e.,

$$
(P_K x_1 - P_K x_2, x_1 - x_2) \geq 0, \forall x_1, x_2 \in V.
$$

5. If *K* is a closed subspace of *V*, then P_K is linear and $V = K \oplus K^{\perp}$.

Exercise 2. Stampacchia's Theorem.

Let *a*(., .) be a continuous bilinear form and coercive on a Hilbert space *V*. Let *K* be a nonempty closed convex set in *V*, and let $f \in V'$. Consider the following problem:

$$
(\mathcal{P})\left\{\begin{array}{l}\text{Find }u \in K \text{ such that} \\ a(u,v-u) \ge (f,v-u), \forall v \in K.\end{array}\right.
$$

- 1. Show that problem P has a unique solution.
- 2. Show that the mapping: $f \mapsto u$ is Lipschitz and satisfies

$$
||u_1 - u_2|| \leq \frac{1}{\alpha} ||f_1 - f_2||,
$$

where $f_1 \mapsto u_1, f_2 \mapsto u_2$, and α is the coercivity constant.

Exercise 3. Application of Stampacchia's Theorem.

Let Ω be a bounded open set in \mathbb{R}^N with boundary Γ , $f \in L^2(\Omega)$, *n* the exterior normal on Γ. Consider the following problem for *u*:

$$
(PC)\left\{\begin{array}{l} -\Delta u + u = f \text{ in } \Omega, \\ u \ge 0, \frac{\partial u}{\partial n} \ge 0, u \frac{\partial u}{\partial n} = 0 \text{ on } \Gamma \end{array}\right.
$$

1. Show that if u is a solution of problem (PC) , then it satisfies the following variational inequality (*PV*):

$$
a(u,v-u) \ge L(v-u), \forall v \in K,
$$

where

$$
a(u,v) = \int_{\Omega} \nabla u \nabla v + uv dx, \ L(v) = \int_{\Omega} fv dx, \ K = \{v \in H^1(\Omega), v \ge 0 \text{ on } \Gamma\}.
$$

- 2. Suppose that if *u* is a solution of (*PV*) and is regular enough, then *u* satisfies problem (*PC*).
- 3. Show that problem (*PC*) has a unique weak solution (in the sense of problem (*PV*)).

Exercise 4. Penalization Method.

Let *a*(., .) be a continuous bilinear form and coercive on a Hilbert space *V*. Let *K* be a nonempty closed convex set in V , $0 \in K$, $f \in V'$. Consider the following variational inequality:

$$
a(u,v-u) \ge L(v-u), \forall v \in K. \tag{1}
$$

Let *B* = *I* − *P*_{*K*}, where *P*_{*K*} is the projection in *V* onto *K*.

- 1. Verify that:
	- $(Bv, v) \geq 0, \forall v \in V$.
	- $B = 0$ on *K*.
	- $(Bu Bv, u v) \ge 0$ (monotonicity).
	- $(Bv, v) = 0 \Leftrightarrow v \in K$.
- 2. Show the existence and uniqueness of $u_{\varepsilon} \in V$ as a solution to the equation

$$
a(u_{\varepsilon},v)+\frac{1}{\varepsilon}(Bu_{\varepsilon},v)=L(v), \forall v\in V.
$$

3. Show that:

- $||u_{\varepsilon}|| \leq C$, where *C* is independent of ε .
- \bullet $(Bu_{\varepsilon}, u_{\varepsilon}) \leq \varepsilon C$
- $(Bu_{\varepsilon}, v) \leq \varepsilon C ||v||, \forall v \in V.$

4. Show that the weak limit of the sequence u_{ε} is a solution of the variational inequality (2).

Exercise 5. Approximation interne

Let *a*(., .) be a continuous bilinear form and coercive on a Hilbert space *V*. Let *K* be a nonempty closed convex set in *V*, and $f \in V'$. Consider the following variational inequality (*P*):

$$
(P)\begin{cases} u \in K \\ a(u,v-u) \ge (f,v-u), \forall v \in K. \end{cases}
$$
 (2)

Suppose that there exists a sequence of finite-dimensional spaces $V_h \subset V$, such that dim V_h < ∞ , and $\forall v \in U$, there exists $(v_h) \subset V_h$ such that $v_h \to v$ in *V* as $h \to 0$.

Suppose also that there exists a sequence of convex closed sets *K^h* in *V^h* , such that

$$
\begin{cases}\n\text{For all } v \in K, \text{ there exists } (v_h) \subset K_h \text{ such that } v_h \to v \text{ in } V, \\
\text{If } u_h \in K_h \text{ and } u_h \to u \text{ in } V \text{ as } h \to 0, \text{ then } u \in K.\n\end{cases}
$$
\n(3)

Define the following problem:

$$
(P_h) \begin{cases} u_h \in K_h \\ a(u_h, v_h - u_h) \ge (f, v_h - u_h), \forall v_h \in K_h. \end{cases}
$$
 (4)

Show that

$$
\lim_{h\to 0}||u_h-u||_V=0,
$$

where u_h is the solution to (P_h) and u is the solution to (P) .

Exercise 6. (**Proximity Operator**) Let *V* be a Hilbert space, $\varphi : V \to \mathbb{R}$ be a proper, convex, and lower semi-continuous function. The proximity operator associated with the function φ is denoted by $Prox_{\varphi}$ and satisfies

$$
\begin{array}{rccc}\nProx_{\varphi} & : & V & \to & V \\
w & \mapsto & u = Prox_{\varphi}(w)\n\end{array}
$$

where u is the unique minimizer of the function

$$
\Phi_w(v) = \frac{1}{2} ||v||^2 + \varphi(v) - (w, v), \forall v \in V
$$
\n(5)

1. Show that:

$$
u = Prox_{\varphi}(w) \Leftrightarrow (u, v - u) + \varphi(v) - \varphi(u) \ge (w, v - u), \forall v \in V.
$$
 (6)

2. Show that the function $Prox_{\varphi}$ is monotone, i.e.,

$$
(Prox_{\varphi}(w_1) - Prox_{\varphi}(w_2), w_1 - w_2) \ge 0, \forall w_1, w_2 \in V.
$$
 (7)

3. Show that the function $Prox_{\varphi}$ is contractive, i.e.,

$$
||Prox_{\varphi}(w_1) - Prox_{\varphi}(w_2)|| \ge ||w_1 - w_2||, \forall w_1, w_2 \in V.
$$
 (8)

4. Conclude that

$$
u = Prox_{\varphi}(u) \Leftrightarrow \varphi(u) \le \varphi(v), \forall v \in V. \tag{9}
$$

Exercise 7. *Let V and ϕ be defined as in Exercise 1. Let K be a non-empty closed convex subset of V,* $a(.,.) : V \times V \to \mathbb{R}$ *be a continuous bilinear form, and* $f \in V$ *. We consider the problem:*

$$
(P)\left\{\begin{array}{ll}\text{Find }u \in K \text{ such that} \\ \text{(10)} \\ \text{(11)}\end{array}\right.
$$

$$
\left(\begin{array}{c}1\end{array}\right)\left(a(u,v-u)+\varphi(v)-\varphi(u)\geq (f,v-u),\forall v\in K.\tag{11}
$$

1. Suppose that a is positive, i.e., $a(v, v) \geq 0$, $\forall v \in V$. Show that problem (P) is equivalent to the *problem:*

$$
\bigcap_{n \geq 0} \int \text{Find } u \in K \text{ such that } \tag{12}
$$

$$
(Q)\begin{cases} 1 \text{ that } u \in \mathbb{R} \text{ such that} \\ a(v, v - u) + \varphi(v) - \varphi(u) \ge (f, v - u), \forall v \in \mathbb{K}. \end{cases} (12)
$$

- *2. Show that the set of solutions of* (*P*) *is a closed convex subset of K.*
- *3. Suppose further that the form a is symmetric. Show that* (*P*) *is equivalent to the following minimization problem:*

$$
(M)\begin{cases} Find \ u \in K \ such \ that \end{cases} \tag{14}
$$

$$
\left(\begin{array}{c} \n\mu & \lambda \n\end{array}\right) \left(\begin{array}{c} \n\mu \end{array}\right) \leq \left(\begin{array}{c} \n\mu \end{array}\right), \forall v \in K. \tag{15}
$$

where the function $J: V \to \mathbb{R}$ *is defined as:*

$$
J(v) = \frac{1}{2}a(v, v) + j(v) - (f, v), \forall v \in V.
$$
 (16)

Exercise 8. *Consider a continuous and positive bilinear form* $a(.,.)$ *on a Hilbert space* $V \times V$ *. Let K be a non-empty closed convex subset of V* , and $f \in V'.$ We introduce the following problem:

$$
(\mathcal{P})\left\{\begin{array}{l}\text{Find }u \in K, \text{ such that} \\ a(u,v-u) \ge (f,v-u), \text{ for all } v \in K.\end{array}\right.
$$

1. Show that problem (*P*) *is equivalent to the problem*

$$
(Q)\begin{cases} \text{Find } u \in K, \text{ such that} \\ a(v, v - u) \ge (f, v - u), \text{ for all } v \in K. \end{cases} \tag{17}
$$

- *2. Prove that the set of solutions* $S = \{u \in K/a(u,v-u) \ge (f,v-u)$, for all $v \in K\}$ of problem (P) *is a closed convex set.*
- *3.* Let $\beta(.,.)$ be a continuous and coercive bilinear form on $V \times V$, and $g \in V'.$ For $\varepsilon > 0$, we define *the problem*

$$
(\mathcal{P})\left\{\n\begin{array}{l}\n\text{Find }u^{\varepsilon} \in K, \text{ such that} \\
a(u^{\varepsilon}, v - u^{\varepsilon}) + \varepsilon \beta(u^{\varepsilon}, v - u^{\varepsilon}) \ge (f + \varepsilon g, v - u^{\varepsilon}), \text{ for all } v \in K.\n\end{array}\n\right.
$$

Show that problem $(\mathcal{P}^{\varepsilon})$ *has a unique solution* u^{ε} *.*

4. Prove that

$$
S \neq \emptyset \iff \exists C > 0, \|u^{\varepsilon}\| \leq C,\tag{19}
$$

C is independent of ε.

5. Assuming that $\|u^\varepsilon\|\leq C$ *, demonstrate that* $u^\varepsilon\to u^0$ *as* $\varepsilon\to 0$ *, where* u^0 *is the unique solution of the problem*

$$
(\mathcal{P})\left\{\begin{array}{l}\text{Find }u^0\in\mathcal{S}\text{, such that}\\ \beta(u^0,v-u^0)\geq (g,v-u^0)\text{, for all }v\in\mathcal{S}\text{.}\end{array}\right.
$$

Exercise 9. Let V be a Hilbert space, and $\varphi(.,.) : V \times V \to \mathbb{R}$ be a convex function that is lower semi*continuous with respect to the first component, i.e., if* $v_n \to v$ *, then* $\liminf_{n>1} \varphi(v_n, w) \geq \varphi(v, w)$ for all $w \in V$. Additionally, $\varphi(tu + (1-t)v, w) \leq t\varphi(u, w) + (1-t)\varphi(v, w)$ for all $u, v, w \in A$, and $t \in [0,1]$. Let K be a non-empty closed convex subset of V, $a(.,.) : V \times V \to \mathbb{R}$ be a continuous bilinear *form, and* $f \in V$.

We consider the problem:

$$
(P)\begin{cases} Find \ u \in K, \ such \ that \end{cases} \tag{20}
$$

$$
\int \int a(u,v-u) + \varphi(v,u) - \varphi(u,u) \ge (f,v-u), \text{ for all } v \in K. \tag{21}
$$

1. Suppose that a is positive, i.e., $a(v, v) \geq 0$ *, for all* $v \in V$ *. Show that problem* (*P*) *is equivalent to the problem*

$$
(Q)\begin{cases} \text{Find } u \in K, \text{ such that} \end{cases} \tag{22}
$$

$$
\int_{0}^{\infty} \left(a(v, v - u) + \varphi(v, u) - \varphi(u, u) \right) \ge (f, v - u), \text{ for all } v \in K. \tag{23}
$$

- *2. Prove that the set of solutions of* (*P*) *is a closed convex subset of K.*
- *3. If a is also symmetric, show that* (*P*) *is equivalent to the following minimization problem:*

$$
(M)\begin{cases} \text{Find } u \in K, \text{ such that} \\ I(u) \le I(u) \le \frac{1}{2} \end{cases} \tag{24}
$$

$$
I^{(1)}\bigcup J(u) \le J(v), \text{ for all } v \in K. \tag{25}
$$

where the function $J: V \to \mathbb{R}$ *is defined as:*

$$
J(v) = \frac{1}{2}a(v, v) + \varphi(v, v) - (f, v), \text{ for all } v \in V.
$$
 (26)

Good luck!