

University Kasdi Merbah-Ouargla

Department of mathematics

Abstract Algebra 01

2nd series of exercises: Sets and binary relations, equivalence and order (Tutorials) 2024/2025

Exercise 01

1/Describe the following sets using Roster method:

$$A = \left\{\frac{1}{n} \mid n \in \{3, 4, 5, 6\}\right\} \qquad B = \left\{x \in \mathbb{Z} \mid x = x + 1\right\}$$

2/ Let A and B be sets. Show that

a)
$$A \cap (B \setminus A) = \emptyset$$
 b) $A \cup (B \setminus A) = A \cup B$ c) $\mathcal{P}(A) \subseteq \mathcal{P}(B) \iff A \subseteq B$.

Exercise 02 : (De Morgan laws)

Show that:

a) $(A \cup B)^c = (A^c \cap B^c)$ b) $(A \cap B)^c = (A^c \cup B^c)$

Exercise 03:

Let E be a set and A,B and C powersets of E.

a) Give the definition of $A \triangle B$.

b) We assume that $A \triangle B = A \triangle C$, establish that $B \subset C$. (Check the two cases $x \in A$ and $x \notin A$).

Exercise 04:

Let \mathcal{R} be the relation defined on \mathbb{R} by:

$$x\mathcal{R}y \Leftrightarrow x^2 - y^2 = x - y$$

- 1) Show that \mathcal{R} is an equivalence relation.
- 2) What are the equivalence classes of a given real x, as well as cl(0).

Exercise 05:

Let ${\cal E}$ be a finite set, show if the following relation is reflexive, antisymmetric and transitive?

$$\forall A, B \in \mathcal{P}(E), A\mathcal{R}B \Leftrightarrow x \in A \cap B^c$$

Exercise 06:

Let \mathcal{R} be the relation defined on \mathbb{R}^2 by:

$$(x,y)\mathcal{R}(x',y') \Leftrightarrow |x-x'| \leqslant y'-y$$

Show that \mathcal{R} is an order relation.

Exercise 07:

Let \mathcal{R} be a relation defined on \mathbb{R} by : $\forall (x, y) \in \mathbb{R}^2$, $x\mathcal{R}y \iff \cos^2(x) + \sin^2(y) = 1$. 1) Prove that \mathcal{R} is an equivalence relation on \mathbb{R} .

2) Find the equivalence class of 0.

Exercise 08:

Let \mathcal{R} be a relation defined on \mathbb{N} by : $\forall n, m \in \mathbb{N}$, $n\mathcal{R}m \iff m$ divise n. Prove that \mathcal{R} is a partial order relation on \mathbb{N} .

University Kasdi Merbah-Ouargla

Department of mathematics

Abstract Algebra 01

2nd series of exercises: Functions (Tutorials) 2024/2025)

Exercise 01:

For
$$f : \mathbb{R} \to \mathbb{R}$$
, $x \longmapsto x^2 + 1$, find each of the following :
1/ $f^{-1}([-1,1])$ and $f^{-1}([0,10])$

2/]f([-1,1]) and f([1,3])

Exercise 02:

Is the following functions injectives, surjectives, bijectives ?

1)
$$f:[0,+\infty[\longrightarrow [1,+\infty[2) g:[-1,1] \longrightarrow \mathbb{R}]$$

 $x \longmapsto f(x) = 3x^2 + 4x + 1.$ $x \longmapsto g(x) = \sqrt{1-x^2}.$

Exercise 03:

We consider the following function :

$$g:]-\infty, 0[\longrightarrow]1, +\infty[$$

 $x \longmapsto g(x) = 1 + \frac{1}{x^2}.$

- 1. Show that *g* is bijective.
- 2. Find g^{-1} .

Exercise 04:

For $f : \mathbb{R} \to \mathbb{R}$, $x \longmapsto x^2 + 1$, find each of the following :

$$1/ f^{-1}([-1,1])$$
 and $f^{-1}([0,10])$

2/]f([-1,1]) and f([1,3])

Exercise 05:

We consider the following function :

$$g:]-\infty, 0[\longrightarrow]1, +\infty[$$

 $x \longmapsto g(x) = 1 + \frac{1}{x^2}.$

1. Show that *g* is bijective.

2. Find
$$g^{-1}$$
.